Discussion Problems for Math 180

Tuesday, April 14, 2015

Review - take no more than five minutes per question.

1. (a) Use a linear approximation to the function $f(x)=\sqrt{x}$ to estimate $\sqrt{8}$.
(b) Now use a linear approximation to the function $g(x)=8 / \sqrt{x}$ to estimate $\sqrt{8}$.
(c) Are your answers overestimates or underestimates? What does this tell us about $\sqrt{8}$?
2. Find $\lim _{x \rightarrow 0^{+}} \ln \left(\tan \left(x+\frac{\pi}{2}\right)\right)^{x}$.
3. If $f^{\prime}(x)>0$ on the interval $[a, b]$, which of the following are necessarily true?
(a) $f(x)$ is positive on $[a, b]$.
(b) If $a<x<b$ then $f(x)>f(a)$.
(c) The slope of the tangent line to f at a point $a<x<b$ is increasing.
(d) f is concave up on $[a, b]$.
(e) $f(b)>f(a)$.

This time
4. (a) Sketch a graph of the function $f(x)=\sin (x)$.
(b) What is the area under each of the humps?
5. Use a geometric argument to calculate $\int_{2}^{4} 3 x+5$.
6. If we take a (finite) left Riemann sum approximating the integral $\int_{a}^{b} \arctan (x) d x$, will we necessarily get an underestimate or an overestimate?
7. Determine the antiderivatives of $f(x)=x \sin (x)$. (This will require some creativity.)

